
Control of Dynamic Parkour Motions for a Hopping Leg Maximilian Albracht1,2

1 FH Aachen, 2 Robotics Innovation Center, DFKI GmbH

Motivation

As legged locomotion in nature is very dynamic
and rich, this elegant art of movement should
also be exploited by robots to enable efficient
and unrestricted locomotion even on difficult
terrain. As parkour places a strong empha-
sis on adaptability, creativity, and functional
motion, the incorporation of techniques from
this discipline into the field of robotics holds
substantial potential as well.

Hopping Leg on a Broomstick

The system encompasses four rotational de-
grees of freedom, with two being actively con-
trollable (Hip and Knee) and two remaining
passive (Pitch and Yaw). Quasi direct drives
(qdd100 from mjbots [1]) are utilized as ac-
tuators, enabling high torque to weight ratio
and backdriveability.

Figure: Degrees of Freedom

Workspace Idealization

The workspace of the system is approximately
a thin-walled sphere. However, with joint
limits and a very long rod, the workspace is
roughly equivalent to a cylindrical surface. This
workspace idealization is highly beneficial:
• sufficiently accurate
• reduces computational demands
• clearer visualization

Figure: Idealized Workspace

Energy Based Hopping Control

In flight phase, the legs center of mass is
bounded to a ballistic trajectory. The govern-
ing equations are considered with the position
difference ∆x , ∆z and the launch angle θ as
known variables.

x = x0 + vt cos θ

z = z0 + vt sin θ − 1

2
gt2

From this, the launch velocity v is calculated.

v =
∆x√

2∆x tan θ−∆z
g cos θ

The GRF (ground reaction force) λ to be ap-
plied over exertion distance d is computed by
comparison of the kinetic energy and the work
on the hopping legs center of mass.
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By utilizing the Jacobian matrix J, a mapping
between the GRF vector λ and motor torques
τ is established.

τ = Jᵀλ

Due to the Jacobian’s dependence on joint
angles, it needs to be recalculated every time
a joint angle of the leg changes.

Optimal Motion Planning

Depending on the desired number of jumps
N , the following jump parameters are set as
continuous decision variables:
• t[N ] ≡ time per jump
• v[N ] ≡ take-off velocity
• θ[N ] ≡ take-off angle

With those, the landing point x [n] is defined for
each jump. A parkour with K obstacles is mod-
eled as a non-continuous function. Thus, mo-
tion planning transforms into a mixed-integer
optimization problem, necessitating the intro-
duction of binary decision variables:
• δa[N ,K ] ≡ obstacle front passed
• δb[N ,K ] ≡ obstacle back passed

The idea is to have the variable equal to zero if
the landing point is before, and equal to one if
the landing point is behind the corresponding
obstacle border A[k], B [k].

Optimal Motion Planning (ctnd.)

This is enforced by the following constraints:

δa[n, k](A[k]− x[n]) ≤ 0

(1− δa[n, k])(x[n]− A[k]) ≤ 0

δb[n, k](B [k]− x[n]) ≤ 0

(1− δb[n, k])(x[n]− B [k]) ≤ 0

With this logic, the height of the parkour is
mapped and imposed as constraint on the land-
ing height z [n]:

K∑
k=1

H [k](δa[n, k]− δb[n, k]) = z[n]

The constraints above are set for ∀n ∈ N ⊂
[1,N ] and ∀k ∈ N ⊂ [1,K ]. Also modeled
are margins Mh, Mv and restricted areas in
which landing is prohibited.

Figure: Parkour Model

The criterion for optimality is the minimum
sum of jump times.

min
N∑
n=1

t[n], ∀n ∈ N ⊂ [1,N ]

Extended Sate Machine

During a jump, the hopping leg goes through
distinct states, and these states transition
through discrete events. To effectively address
these challenges, an extended state machine is
implemented as the core control structure. A
PD control scheme is imposed for the granular
segmented jumping phases, with appropriate
gains and targets assigned for each task.

Figure: State Machine Diagram

Extended State Machine (ctnd.)

Table: PD Gains and Target Configuration per State

State
Gains

Target
Hip Knee
Kp Kd Kp Kd r [m] θ [deg]

Staging 11 0.3 9 0.5 0.14 θd
Exertion 0 0 0 0 - -
Flight 2 0.2 2 0.2 0.17 93
Absorption 0.1 0.5 0.1 0.5 0.15 θd
Repositioning 4 0.3 4 0.3 0.14 θd

Table: Trigger Conditions per Event

Event Trigger

Launch

vf ≤ 0.003
0.12 ≤ r ≤ 0.14

θd − 2 ≤ θ ≤ θd + 2
n ≤ N − 1

Take-off r ≥ 0.2

Touchdown
τh ≥ τth ∨ τk ≥ τth

r ≤ 0.17

Landed
vee ≤ 0.1
r ≤ 0.15

Alignment
vee ≤ 0.1

θd − 5 ≤ θ ≤ θd + 5

Experimental Results

A parkour course with six obstacles and four
restricted areas is to be traversed with a total
of twelve jumps. The goal region is reached
with a complete yaw rotation after 7.2 m.

Figure: Experiment Setup

The motion planning is solved with SNOPT
[2], leveraging the Mixed Integer Branch and
Bound process within Drake [3]. The processor
used is an Intel(R) Core(TM) i7-2620M CPU @
2.70GHz. It takes 11.461 s to find an optimal
solution. The planned contact sequence is then
executed with a motor control loop frequency
of 130 Hz.

Experimental Results (ctnd.)

The measured foot trajectory is kinematically
determined with HyRoDyn [4] and projected
onto the two-dimensional plane of the idealized
workspace. In the final jump, a backflip is
executed as a show-off element.

Figure: Planned and Measured Foot Trajectory

The output generated by the controller are the
desired actuator torques for each time step.

Figure: Torque Trajectory

Acknowledgment

This work was supported by the federal state of Bremen
for setting up the Underactuated Robotics Lab under
Grant 201-342-04-2/2021-4-1.

References

[1] mjbots. qdd100 beta 3 servo. url: https://mjbots.com/

products/qdd100-beta-3.

[2] Philip E. Gill, Walter Murray, and Michael A. Saunders.

“SNOPT: An SQP Algorithm for Large-Scale Constrained Op-

timization”. In: SIAM Review 47 (1 Jan. 2005), pp. 99–131.

issn: 0036-1445. doi: 10.1137/S0036144504446096.

[3] Russ Tedrake and the Drake Development Team. Drake:

Model-based design and verification for robotics. 2019. url:

https://drake.mit.edu.

[4] Shivesh Kumar. “Modular and Analytical Methods for Solving

Kinematics and Dynamics of Series-Parallel Hybrid Robots”.

PhD thesis. Bremen, Germany: Universität Bremen, 2019.

Summer of Underactuation 2023 1 FH Aachen, 2 Robotics Innovation Center, DFKI GmbH – https://robotik.dfki-bremen.de/de/forschung/testanlagen-labore/underactuated-lab

https://mjbots.com/products/qdd100-beta-3
https://mjbots.com/products/qdd100-beta-3
https://doi.org/10.1137/S0036144504446096
https://drake.mit.edu

	References

