# **RicMonk: A Three-Link Brachiation Robot**

#### **Brachiation and Brachiation Robots**

Brachiation (illustrated in Fig. 1), a mode common RicMonk (Fig. 3) is a three-link underactuated brachiation among primates like long-armed gibbons, involves swinging robot emulating gibbon movements. It embodies portability between tree branches using only their arms. Gibbons and agility while using a modular approach for adaptability, brachiate at speeds up to  $25 \text{ km h}^{-1}$ , demonstrating swiftly replacing parts after collisions. 3D-printed parts remarkable agility. This locomotion mode holds potential ensure robust yet lightweight construction. The arms and for diverse applications such as agriculture surveillance, passive gripper are inspired by AcroMonk[2]. Electrical forest exploration, and biomimetic design. Robots capable components and the battery reside securely in the tail's of brachiating and walking, termed Multi-locomotion bottom box. A stable gripper design is critical during robots (MLR), offer intriguing opportunities for study swinging. The original cylindrical pivot lacked stability due and implementation [1]. Brachiation includes "Slow to an offset center of mass, causing sway and weak contact. Brachiation," where the robot swings between branches This instability led to undesired motion with one arm on without a free-flight phase, and "Fast Brachiation" or the ladder bar. To solve this, a conical pivotal surface "Ricochetal Brachiation," involving dynamic free-flight was introduced (Fig. 4), accommodating the offset. This phases. This unique locomotion bears similarity to walking improved stability, although a tight grip required higher and running, relying on arm-leg coordination for balance release torque. Also, this gripper design results in mirroring against soft disturbances in the path of the robot, and and propulsion. symmetry rather than full sagittal symmetry in RicMonk.



#### AcroMonk Inspiration

AcroMonk [2] (shown in Fig. 2), is a two-link underactuated brachiation robot weighing 1.6 kg, capable of performing continuous brachiation cycles robustly. The AcroMonk is underactuated and has a single actuator. Its efficient design makes it a light, portable, and robustly strong robot. The AcroMonk is the most simplified system that mimics the behavior of a Gibbon. However, it currently lacks a part that represents the body (or tail) of the Gibbon. As a result, the AcroMonk cannot inject large enough momentum into its motion to perform ricochetal brachiation. Also, since it has only a single actuator, it cannot robustly perform multiple backward brachiation maneuvers. To overcome such challenges, RicMonk comes to life.



Figure: AcroMonk [2]



#### RicMonk



Figure: RicMonk



Figure: Current gripper design

### Trajectory optimization

Brachiation is divided into four simple atomic behaviours -ZB (Zero - Back bar), ZF (Zero - Front bar), BF (Back bar - Front bar), FB (Front bar - Back bar); as defined in [2]. These trajectories (state variables and inputs) are optimized using the Direct Collocation method, by minimizing a cost dependent on the energy expended during the respective maneuver.

## **Trajectory Stabilization**

Each of the trajectories is stabilized using the Proportional-Derivative (PD) controller and the Time-varying Linear Quadratic-Regulator (TVLQR) in simulation. However, in reality, model-free PD controller faces difficulty in tracking the unactuated joint. Model-based TVLQR is successful in tracking all the trajectories.



Atomic behaviors were executed on the real system using the TVLQR controller. State estimation accommodating the RicMonk arm's complete revolution enabled combining atomic behaviors, facilitating continuous brachiation. Fig. 5 and 6 illustrate RicMonk performing multiple forward and backward directions respectively. The controller is robust excess weight. Fig. 7 displays variation in robot's position during recovery from disturbance during brachiation.



(left to right)

### Energy efficiency analysis

Cost of Transport (CoT) [3], [4] is a dimensionless measure for energy efficiency, allowing comparison across sizes and structures. Formulated as Eq. 1, it factors in energy input (E), mass (m), distance (d), and gravity acceleration (g).

The lower the CoT value, the more energy-efficient a given system is. Table 1 compares total energy consumed (TE), CoT, and time taken(t) during five continuous forward brachiation maneuvers for AcroMonk and RicMonk. RicMonk, with the tail, is more energy efficient compared to AcroMonk. However, AcroMonk consumes a lower amount of energy in total.

# **Experimental validation**

Figure: RicMonk performing multiple forward brachiation cycles. Row one - ZF maneuver (left to right), row two & three - BF maneuvers

$$CoT = \frac{E}{mgd} \tag{1}$$

| Table: Comparitive analysis |         |        |              |
|-----------------------------|---------|--------|--------------|
|                             | TE (J)  | CoT    | <i>t</i> (s) |
| AcroMonk                    | 8.9547  | 0.3355 | 11           |
| RicMonk                     | 15.1947 | 0.2760 | 17           |



Figure: RicMonk performing multiple backward brachiation cycles. Row one - ZB maneuver (left to right), row two & three - FB maneuvers (left to right)



Figure: Position plot of RicMonk performing multiple brachiation in face of disturbances in its path. Shaded region of the plots signify disturbance in robot motion

### Acknowledgment

This work was supported by the M-RoCK (FKZ 01IW21002) and VeryHuman (FKZ 01IW20004) projects funded by the German Aerospace Center (DLR) and is additionally supported by the Federal state of Bremen for setting up the Underactuated Robotics Lab under Grant 201-342-04-2/2021-4-1.

| Re  | ferences |
|-----|----------|
| [1] | T. Fuku  |
|     | based m  |
|     | 2005 IEI |
|     | Biomime  |
| [2] | Mahdi    |

- [2] Mahdi Javadi et al. "AcroMonk: A Minimalist Underactuated Brachiating Robot". In: IEEE Robotics and Automation Letters (2023).
- Wiki. https://en.wikipedia.org/wiki/Cost\_ |3| of\_transport.
- Sangbae Kim, Patrick M Wensing, et al. "Design of |4| dynamic legged robots". In: Foundations and Trends (R) *in Robotics* 5.2 (2017), pp. 117–190.



Ida et al. "Multi-locomotion robot - energynotion control for dexterous brachiation -". In: EE International Conference on Robotics and *etics - ROBIO*. IEEE, 2005, pp. 4–9.