
Skidy – a new tool for closed form solution of the equations of motion for open chain robots Hannah Isermann1

1Robotics Innovation Center, DFKI GmbH, Bremen

Motivation

An efficient calculation of the kinematics and dynamics is
essential in the control of robots. Skidy, as symbolic code
generation tool, can calculate these equations in closed
form to provide code for the control of open chain robots.
The individual parameters stay thereby symbolic, so that
they can be adapted in the finished code. This enables
efficient implementations of adaptive control algorithms
and parameter optimizations. By supporting a wide range
of programming languages for code generation, Skidy also
facilitates efficient work on a wide range of systems
without the need to learn a new tool.

Main Features

• Calculate the forward position and velocity kinematics
of open chain robots.

• Calculate the equation of motion and its first and
second order timer derivatives.

• Code generation:

Interfaces

Skidy needs the joint screw coordinates, body transforms
and inertia parameter as program input. They can be
provided via:

• URDF (also convertible to YAML)
• YAML (see Example)
• directly in python

To increase the usability, templates for the YAML and
python files can be generated automatically, where only
the parameters have to be adapted. E.g.:

$ skidy --template -S RR robot.yaml

for a robot with 2 revolute joints.

Hopping leg Quadruped
System

10 5

10 3

10 1

101

Ti
m

e
in

s

Benchmarking
Matlab
Cython
Python
Julia
C++
C

Figure: Execution time of generated inverse dynamics code for 3 DOF
hopping leg and 12 DOF quadruped.

Implementation

Skidy was implemented in Python using the symbolic
mathematics library Sympy [1]. It can be used as a
command line tool or as a library. Skidy is divided into
three main packages:

• kinematics generator: equation and code generation
• matrices: matrix operations and helper functions
• parser: interfaces

skidy

skidy.kinematics_generator

skidy.matrices

skidy.parser

skidy.__main__ skidy.symbols

Figure: Packages in Skidy.

Hopping leg Quadruped
System

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
in

s

Benchmarking
Skidy
Pinocchio

Figure: Execution time of inverse dynamics Skidy (Cython) vs
Pinocchio [2] for 3 DOF hopping leg and 12 DOF quadruped.

Equations of Motion

The implementation followed [3] using Lie group
formulation for rigid body systems to calculate the
kinematics and dynamics in compact equations. The
equations of motion can thereby calculated as followed:
Mass and Coriolis matrix:

MMM(qqq) = JTMJ , CCC (qqq, q̇̇q̇q) = JTCJ

where
M := diag(M1M1M1, ...,MnMnMn)

C (qqq, q̇̇q̇q,V (q̇̇q̇q)) := −MAa − bTM

and
b(V) := diag(adV1

adV1adV1
, ...,adVn

adVnadVn
)

Gravity vector:

QQQgrav(qqq) = JTMUGGG

with

GGG := −
(

000
0ggg

)
, U(qqq) :=

Ad−1
C1

Ad−1
C1

Ad−1
C1
...

Ad−1
Cn

Ad−1
Cn

Ad−1
Cn


External forces:

QQQext(qqq, t) = JT(qqq)WEE(t)

where WEE(t) is the external Wrench at the end-effector.
Inverse dynamics:

τττ = MMM(qqq)q̈̈q̈q +CCC (qqq, q̇̇q̇q)q̇̇q̇q +QQQgrav(qqq) +QQQext(qqq, t)

q: joint position, J : system Jacobian, Mi : 6x6 inertia matrix in body frame, V :

twist, A, a: Block diagonal of the Adjoint and spacial cross product of the body

frame,0g gravity vector, τ : joint torques.

Usage/Example

l2

l1
q1

q2

m2

m1

x
y

Figure: Robotic arm to illustrate
how a robot can be represented in
the YAML file to the right using
symbolic values. The symbolic
variables are used as arguments in
the generated code.

gravity: [0,-g,0]

representation: body_fixed

joint_screw_coord:

- type: revolute

axis: [0,0,1]

- type: revolute

axis: [0,0,1]

body_ref_config:

- translation: [0,0,0]

- translation: [0,l1 ,0]

ee:

translation: [0,l2 ,0]

mass_inertia:

- mass: m1

inertia: m1*l2**2

com: [0,l1 ,0]

- mass: m2

inertia: m2*l2**2

com: [0,l2 ,0]

q: [q1,q2]

qd: [dq1 ,dq2]

q2d: [ddq1 ,ddq2]

Generate the kinematics and equation of motion for this
robot and save them as LaTeX file using:

$ skidy -s --latex robot.yaml

Acknowledgment

This work was supported by the federal state of Bremen for setting up the

Underactuated Robotics Lab under Grant 201-342-04-2/2021-4-1.

References

[1] Aaron Meurer et al. “SymPy: symbolic computing in Python”. In: PeerJ Com-

puter Science 3 (Jan. 2017), e103. issn: 2376-5992. doi: 10.7717/peerj-

cs.103. url: https://doi.org/10.7717/peerj-cs.103.

[2] Justin Carpentier, Florian Valenza, Nicolas Mansard, et al. Pinocchio: fast

forward and inverse dynamics for poly-articulated systems. https://stack-of-

tasks.github.io/pinocchio. 2015–2021.

[3] Andreas Mueller and Shivesh Kumar. “Closed-form time derivatives of the

equations of motion of rigid body systems”. In: Multibody System Dynamics

53.3 (2021), pp. 257–273.

Summer of Underactuation 2023 1Robotics Innovation Center, DFKI GmbH, Bremen – https://robotik.dfki-bremen.de/de/forschung/testanlagen-labore/underactuated-lab

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103

	References

