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Joint space formulation of EOM of each limb Example and Simulation Results

Tree-topology system of PKM

Serial Elastic Actuators (SEAs) have significant advan- Tree-topology system is implemented in which the simplified The EOM of limb / for any multi-body system in standard The proposed algorithm was applied to 6-DOF UPS
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. Protection against Shock Loads : The spring can while L — 1 limbs are cut-off from the platform. el . OF | R ) 05, — .

absorb and dissipate excessive forces. . Each limb is treated as one serial kinematic chain s |.ze ‘;”‘3'5 matr||>|<. ! (/) 'T_ gder;era |zed orces due to £) \/\/§ =0
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and vibrations. enables tailored kinematics modelling for each orees. e UsE this ormu atlc?n to eva uate.u and it's t!me E 6 o, Actuators
. SEAs provide better accuracy in force and position sub-graph in terms of platform motion. derivatives given by ordmar;L/ inverse dynamics formulation; ¥ ~ )
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« Smooth movements : SEAs provide smooth and 1-DOF joints.[2] 1 Time (s)

natural movements which are essential for Humanoid | . L. - ; Figure: a) Inverse Kinematics Solufi;)n. b) Animation of

robots U= Ji Z(QU)) — Jku (5) Stewart-Gough Platform of Recupera-Reha Exoskeleton
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SEAs are predominantly utilised in Serial Manipulators. 1
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stability and performance. of the joint co-ordinates of the ||rnb | as; | | -
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control algorithms, including impedance control and Figure: a)Tree-Topology system of the Stewart-Gough Platform such The inverse kinematics on velocity and acceleration levels, K&elle[IE{e]g

trajectory optimization. that one limb is connected to platform. b) Spanning Tree which also imposes constraints on the joint-coordinates is . Computationally efficient recursive algorithm is

Contribution : A computationally efficient recursive algo- EeiVET1 i Tocte Bl W 24 siven as,

rithm using Lie-Group formulation and exploiting the special T | f ! EOM) th Y
topology of PKM is presented. This enables better control e equations of motion ( ) that govern the

| presented whose performance is sufficient for real-time
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. A Lie-group formulation allows us to have compact

of the PKM which ensures stability and better performance. dynamics in task >Pace and actuator dynaTmlcs SER-UCUEE Fourth-Order Forward/Inverse Kinematics Invariant expressions.
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