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ESA’s free-floating platform REACSA [1]

• 220 kg air-bearing platform
• floats on 9m× 5m flat-floor
• Reaction Wheel for precise

torque control

RW speed limits lead to
saturation

• 8 thrusters apply linear and
angular acceleration

on/off (binary actuated)
thrusters
thrusters have activation
time constraints
• minimum off time: toff,min

• minimum on time: ton,min

• maximum on time: ton,max

on

off

Enforcing binary inputs (ubin ∈ Ubin)

• Mixed Integer Program (MIP)

ui ,t+k|t ∈ {0, 1},∀ui ∈ ubin,∀k ∈ [0,N) (1)

Requires special solver
• Penalty Term

3∑
j=1

4β (ui ,t+k|t − u2
i ,t+k|t), β > 0, ∀ui ∈ ubin (2)

Becomes non-convex Quadratic Program (QP)
• Linear Complementarity Constraints (LCC)

0 ≤ (1− ui ,t+k|t) ⊥ ui ,t+k|t ≥ 0, ∀ui ∈ ubin (3)

Becomes Mathematical Program with Complementarity
Constraints (MPCC)

Activation time constraints (ubin ∈ Utime)

• minimum off time: toff,min = 0.1 s = ∆t
Enforced naturally by zero-oder hold

• minimum on time: ton,min = 0.2 s = 2∆t
+ui ,t+k−1|t − ui ,t+k|t + ui ,t+k+1|t ≤ 1, ∀k ∈ [−2,N − 1),∀i ∈ ubin

• maximum on time: ton,max = 0.3 s = 3∆t∑k+3
j=k ui ,t+j |t ≤ 3,∀k ∈ [−3,N − 3),∀i ∈ ubin
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System model
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With τ ∈ R and ubin =
[
u0 u1 u2 u3 u4 u5 u6 u7

]T ∈ {0, 1}8

Model Predictive Control formulation

Finite horizon optimal control problem:

J∗(xt) = min
Ut,Xt

Lf (xt+N |t) +
N−1∑
k=0

L(xt+k|t,ut+k|t) (6a)

s.t. xt+k+1|t = xt+k|t + ∆tAxt+k+1|t + ∆tBut+k|t, ∀k ∈ [0,N) (6b)

−τmax ≤ u0,t+k|t ≤ τmax, ∀k ∈ [0,N) (6c)

xlb ≤ xt+k|t ≤ xub, ∀k ∈ [0,N) (6d)

xf,lb ≤ xt+N |t ≤ xf,ub (6e)

ubin,t+k|t ∈ Ubin, ∀k ∈ [0,N) (6f)

ubin,t+k|t ∈ Utime, ∀k ∈ [0,N) (6g)

xt|t = xt (6h)

• Discretization
∆t = 0.1 s

• Closed loop
control cycle
with 100 ms

Feasilibity analysis

On a simplified model (4 thrusters, no reaction wheel) the feasibility of all
three binary input formulations is compared:
Linear Mixed Integer:
• Feasible solutions within 100 s

• For short prediction horizons
solutions are optimal enough

(Quadratic) Penalty-term:
• Penalty term not fully

minimized

• Solutions have continuous
values

Complementarity constraints:
• For this problem most of the

time infeasible

=⇒ Mixed Integer Linear
MPC is used in this work

Simulation results

MILP was tested on 200 experiments with random initial states.
Simulated using drake toolbox [2].

• Average solver time 56.08 ms with a standard deviation of
27.00 ms

• 27.45 % suboptimal solution
• In all experiments the system was steered towards and kept at

the origin with an RMS error of 0.004 m and 0.097◦

Real world experiments on REACSA

Final MIMPC implemented in C++ using SCIPSolver [3], compared to existing TVLQR

Homing MIMPC TVLQR
To reach limit cycle

Time 54.00 s 87.05 s
Thrust 7.10 s 9.10 s

In limit cycle

RMS Error 0.0086 m, 0.0283 m,
0.584◦ 1.140◦

Oscillation 0.0089 m, 0.030 m,
0.490◦ 0.837◦

Thrust 0.083 s
s

0.104 s
s

1-meter MIMPC TVLQR
To reach limit cycle

Time 27.00 s 47.02 s
Thrust 2.70 s 4.5 s
RMS Error 0.011 m 0.031 m

0.648◦ 1.58◦

In limit cycle

RMS Error 0.015 m, 0.040 m,
0.739◦ 1.78◦

Oscillation 0.006 m, 0.015 m,
0.810◦ 0.76◦

Thrust 0.089 s
s 0.080 s

s

180 deg MIMPC TVLQR
To reach limit cycle

Time 21.0 s 53.6 s
Thrust 1.90 s 4.3 s
RMS Error 0.008 m 0.027 m

In limit cycle

RMS Error 0.013 m, 0.019 m,
0.221◦ 0.246◦

Oscillation 0.010 m, 0.02 m,
1.07◦ 1.67◦

Thrust 0.050 s
s

0.060 s
s

(a) Homing (b) 1-m straight (c) rotate 180◦

Figure: System trajectories on a height map of the not perfectly flat flat-floor
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